DEADLY DIPLOPIA: MYASTHENIA GRAVIS

Christina Kim, O.D.
Primary Eye Care & Ocular Disease Resident
VA Portland Health Care System
June 2020
Northwest Resident's Conference

DISCLOSURES

The Presenter and Organizers for DEADLY DIPLOPIA: MYASTHENIA GRAVIS
By Dr. Christina Kim, OD has no financial relationship with any company or products mentioned in this presentation.

OVERVIEW

• Review myasthenia gravis and pathophysiology
• Recognize systemic and ocular signs and symptoms
• Review diagnostic tests
• Inform on current and potential new biomarker antibodies
• Improve quality of care to patients

INTRODUCTION

• What is myasthenia gravis?
• Neuromuscular disease that leads to varying degrees of skeletal muscle weakness
• Two clinical forms:
 • General myasthenia gravis (GMG)
 • Ocular myasthenia gravis (OMG)
• Severe (potentially fatal) cases
• Myasthenia gravis crisis

GENERALIZED MYASTHENIA GRAVIS (GMG)

• Most common neuromuscular junction disorder
• Prevalence: 10-20 cases per 100,000 population
• Higher prevalence in African Americans and those close to equator
• Complex mix of heredity and environmental factors
• Bimodal distribution
 • Peak age at 30 years and 50 years
 • Steady rise in incidence after age 50
• Female predilection when younger; male predilection when older
OCULAR MYASTHENIA GRAVIS (OMG)

- Extraocular muscles and levator palpebrae superioris (LPS) involved
- 50% have ocular muscle weakness as first manifestation before generalized weakness
- 15-49% will have only ocular clinical form

MYASTHENIA GRAVIS CRISIS

- Respiratory failure due to worsening muscle weakness
- Requires intubation and mechanical ventilation to protect airway until strength improves
- 15-20% of patients experience usually early in disease course (within 1-2 years)
- Mortality <5%

ANATOMY/PATHOPHYSIOLOGY

NON-ACHR ANTIBODY MG

GENERAL MG

- Variable weakness of skeletal muscles
- Muscles affecting breathing, swallowing, and facial muscles
- Difficulty holding head upright
- Gait instability

OCULAR MG

- Weakness of levator palpebrae superioris (LPS), orbicularis oculi, and/or EOMs
- Initial presentation in 50% of patients: ptosis and diplopia
- Painless fluctuating, unilateral/bilateral or alternating ptosis
- Hyper-retraction of fellow eyelid

OCULAR CLINICAL SIGNS

- Lid fatigue
- Enhancement of ptosis
- Sustained in upgaze
- Repeated lid closure and opening
- Cogan’s lid twitch
- Peak sign – orbicularis oculi weakness
- Variable strabismus
- Ophthalmoplegia
- No pupil abnormalities

CLINICAL SYMPTOMS

OCULAR CLINICAL SIGNS

DIAGNOSTIC TESTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-pharmacological</td>
<td>Ice pack test, Sleep test</td>
</tr>
<tr>
<td>Tension (Edrophonium) testing</td>
<td>Not commonly used but performed by neuro</td>
</tr>
<tr>
<td>Auto-antibody bloodwork</td>
<td>AChR antibodies, MuSK antibodies, LRP4 antibodies</td>
</tr>
<tr>
<td>Electrophysiological studies</td>
<td>Repetitive nerve stimulation (RNS), Single fiber electromyography (SF-EMG)</td>
</tr>
</tbody>
</table>

NON PHARMACOLOGIC TESTS

ICE PACK TEST
- Ice pack placed on eye for ~2-5 minutes
- Patient's ptosis should improve/resolve

SLEEP (REST) TEST
- Patient sleeps/rests in dark/quiet room for ~30 minutes
- Ptosis and diplopia should resolve/improve

EDROPHONIUM TEST
- Edrophonium = short acting AChE inhibitor w/ onset 10-30 seconds after IV administration
- Improved muscle function within 5 minutes
- Potential severe adverse effects → used less often

ELECTRODIAGNOSTIC TESTS

REPETITIVE NERVE STIMULATION
- 50% of OMG patients have abnormalities
- Overestimates so does not exclude disease
- Performed on orbicularis oculi, extensor digitori communis or frontalis muscles
- Evaluates jitter
- Can predict severity of disease
- Con: instrument not easily accessible and requires skilled/trained clinician

SINGLE-FIBER ELECTROMYOGRAPHY
- Striational
- Agrin
- Kv1.4
- Rapsyn
- Cortactin
- ColQ

CURRENT AUTOANTIBODY ASSESSMENT
- AChR antibody
- MuSK antibody
- LRP4 antibody

OTHER ANTIBODIES
- Striational
- Agrin
- Kv1.4
- Rapsyn
- Cortactin
- ColQ
CHEST IMAGING FOR THYMOMA

- Thymus function: regulate T-cell reactivity
- Positive selection
- Negative selection
- Thymus gland triggers or maintains production of antibodies that block AChR
- Can have thymus hyperplasia or thymoma (10%)
- Early onset – hyperplastic thymus
- Late onset – thymoma

TREATMENT/MANAGEMENT

- Acetylcholinesterase inhibitors
- Mestinon (pyridostigmine)
- Immunosuppressive drugs
- Prednisone (EPITOME trial)
- Steroid sparing agents
- Azathioprine
- Mycophenolate Mofetil
- Thymectomy

MANAGING YOUR PATIENT

PTOSIS
- Ptosis crutches or tape
- Surgery only for chronic, stable lid droop

DIPLOPIA
- Patch
- Prisms
- Strabismus surgery; poor outcome

SUMMARY – A CASE

- 70 year old white male
- Chief complaint:
 - Intermittent horizontal and vertical diplopia at distance and near by end of day
- Droopy upper eyelid OD
- POHx:
 - H/o prism for decompensating phoria but no longer useful
 - H/o variable cover test results
- PMHx: unremarkable
SUMMARY – A CASE

- **VA:**
 - OD: 20/20-2 holding upper lid
 - OS: 20/20
- **Pupils:** ERRL; (-) RAPD
- **Versions:** full and unrestricted
- **Cover test:** orthotropic

SUMMARY – A CASE

- **Order lab tests**
 - AChR antibody and thyroid panel
 - Past MRI from Roseburg VA normal
- **Plan**
 - Refer to neurology and order chest CT

CLINICAL PEARLS

- Consider OMG in patient with:
 - Fluctuating unilateral or bilateral ptosis and diplopia
 - Any pattern of painless pupil sparing ophthalmoplegia
 - Normal AChR-Ab lab results does not rule out MG
 - Refer to neurology or neuromuscular clinic for a full work-up
 - Patients may be on long-term corticosteroid
 - Consider visual treatment options for symptomatic relief

Neurology visit

- AChR antibody ELEVATED at 24nmol/L (positive if >0.4 nmol/L)
- TSH/free T4 normal
- Chest CT: no evidence of thymoma
- **Plan**
 - Start 60 mg pyridostigmine po TID
 - Continue to monitor with neurology and neuro-ophthalmology q6mos
REFERENCES

THANK YOU!

MENTORS
- Dr. Weon Jun
- Dr. Mark Williams
- Dr. Kimberly Winges
- Dr. Amara Callahan
- Dr. Kirk Halvorson
- Dr. Rebecca Kline
- Dr. Shannon Lutz
- Dr. Molly Phan
- Dr. Jonathon Thomas
- Dr. Grace Tsan

LOW VISION STAFF
- Jodi Roth
- Leif Johanson
- Paul Thomas
- Kara Huntingo

MY CO-RESIDENTS
- Dr. Chau Bee Bui
- Dr. Yasser Choan
- Dr. Allison Mina Choi
- Dr. Michelle Liang
DEADLY DIPLOPIA:
How To Diagnose & Manage Intracranial Aneurysms

Allison M. Choi, OD
Primary Eye Care & Ocular Disease Resident
VA Portland Health Care System

June 5-6 2020
Northwest Residents Conference
The presenter and organizers for Deadly Diplopia: How To Diagnose & Manage Intracranial Aneurysms

By Dr. Allison M. Choi, OD has no financial relationship with any company or products mentioned in this presentation
My GASP...

Deadly Diplopia

- Myasthenia Gravis
- Giant Cell Arteritis
- Aneurysm
- Syphilis
- Papilledema
Overview

• Definitions & epidemiology
• Clinical presentation, neuro-anatomy, and physiology
• Management
Intracranial Aneurysms

• A cerebrovascular disorder in which there is a pathological outward bulging or ballooning due to a weakened artery wall

• Rupture of the weakened wall can lead to a subarachnoid hemorrhage
 • When an aneurysm ruptures, the mortality rates are as high as 50% and considerable neurologic morbidity

• May present with diplopia

• One of the *true emergencies* of eye care
Demographics

- 3-5% of the population
- Rupture rate of 1-2% per year; 6% if symptomatic
- 500,000 annual deaths due to ruptured aneurysms
- 10-30% can have multiple aneurysms
- Peaks in the 4th-6th decade
- More common in females

<table>
<thead>
<tr>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Female sex</td>
</tr>
<tr>
<td>Positive family history</td>
</tr>
<tr>
<td>Hypertension, especially uncontrolled</td>
</tr>
<tr>
<td>Genetic conditions (i.e. connective tissue disorders)</td>
</tr>
<tr>
<td>Cigarette smoking</td>
</tr>
<tr>
<td>Alcohol abuse</td>
</tr>
<tr>
<td>Japanese and Finnish populations</td>
</tr>
<tr>
<td>Estrogen deficiency? Hormone replacement therapy?</td>
</tr>
</tbody>
</table>
Pathophysiology & Etiology of Symptoms

• Acquired degenerative changes (impaired vessel wall integrity)
• Hemodynamic stress
 • Aneurysms occur most often at arterial bifurcations and the Circle of Willis (flow pattern changes)
 • Perpendicular and parallel forces against the vessel wall

1. Mass effect
 • Dependent on adjacent neural tissue

2. Alteration of distal circulation of their parent vessel
 • Vascular compromise
 • Transient or permanent

3. Rupture (90%)
 • Increased intracranial pressure
 • Later on: intracranial vessel spasm
The interval from presenting signs to rupture varies from 1 day to 4 months.

Higher risk of rupture if:
- Previous history of a subarachnoid hemorrhage
- In posterior circulation
- Presence of a daughter sac
- Patient is a smoker or has concurrent hypertension
- Rupture is associated with ~70-80% mortality and morbidity
Classification

Shape or type
- Berry or saccular (90%)
- Fusiform
- Dissecting
- Other

Size
- Sac
- Small: <10 mm
- Large: 10-25 mm
- Giant: >25 mm
- Neck
- Small: <4 mm
- Large: >4 mm

Location
- Intradural vs. extradural
- Which arterial branch

![Saccular aneurysm with narrow neck](saccular.png)
![Saccular aneurysm with broad base](saccular.png)

![Brain with vessels](brain.png)

Reference:
- [Neurooperations](http://www.neurooperations.com/index.php?page=facilities_detail&category_id=149&subcategory_id=183&article_id=256)
- [Circle of Willis Anatomy Diagram and Functions](https://www.scienceabc.com/humans/circle-of-willis-anatomy-diagram-and-functions.html)
Clinical Presentation

General
- Headache: 23.7%
- Ischemic cerebrovascular disease or transient ischemic attack: 10.6% and 10.5% respectively
- Cranial nerve palsy: 8%
- Undefined “spells”: 7.1%
- Other

Ocular
- Ophthalmoplegia
- Vision or visual field loss
- Horner’s Syndrome
- Cortical blindness
- Specifically, when ruptured:
 - Papilledema
 - Terson’s Syndrome
Diplopia

- Cranial nerve 3 palsy
- Cranial nerve 4 palsy
- Cranial nerve 6 palsy
- Multiple nerve palsies

TABLE 59.1 Etiology of Isolated Palsies of Cranial Nerves III, IV, and VI

<table>
<thead>
<tr>
<th></th>
<th>Oculomotor Nerve</th>
<th>Trochlear Nerve</th>
<th>Abducens Nerve</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPORTION (%)‡</td>
<td>31</td>
<td>11</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>ETIOLOGY (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head trauma</td>
<td>13</td>
<td>34</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>Neoplasm</td>
<td>11</td>
<td>5</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>Ischemic</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Aneurysm</td>
<td>17</td>
<td>1</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Other</td>
<td>14</td>
<td>8</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>20</td>
<td>30</td>
<td>26</td>
<td>16</td>
</tr>
</tbody>
</table>
Anatomy

- 85% of saccular aneurysms occur in the internal carotid artery or its branches
- About 1/3 within the main trunk of the internal carotid artery
- Less frequently, aneurysms may form on basilar and vertebral artery
Anatomy

- Most often presents as multiple cranial nerve involvement, including facial pain
- 6th nerve runs closest to the internal carotid artery with the cavernous sinus
Pupil Sparing Rule

- 95% of aneurysmal palsies have a sluggish or fixed/dilated pupil
- 73% of ischemic palsies have pupil sparing
- 3 caveats
 1. Must be *complete* paralysis with *complete* pupil sparing
 2. Apply *sparingly* when <50 years old
 3. Only if neurologically isolated

https://blog.optoprep.com/pupil-involved-vs.-pupil-sparing-acquired-oculomotor-nerve-palsy
Ocular Clinical Presentation: CN III Palsy

- Sudden onset of binocular horizontal or vertical diplopia
- Down and out appearance with a dilated, non-reactive pupil, and ptosis
 - Paralysis of adduction, elevation, and depression
 - Anisocoria worse in bright light
- If a partial lesion:
 - The pupil may be either normal
 - Ptosis of varying degree
 - EOMs may be partially involved

https://jamanetwork.com/journals/jamaneurology/fullarticle/791333
CN III Palsy:
62 Year Old Male
With Internal Carotid Artery Aneurysm

Primary gaze
Right ptosis
Left gaze
ADDuction deficit

https://www.reviewofoptometry.com/article/double-trouble-ii
CN III Palsy:
49 Year Old Female
With Posterior Communicating Artery Aneurysm

Primary gaze
Left hypo- & exotropia
Supra-, infra-, & ADDuction deficit
CN III Palsy:
62 Year Old Female
With Posterior Communicating Artery Aneurysm
Partial CN III Palsy:
58 Year Old Female
With Subarachnoid Hemorrhage From Left Posterior Communicating Artery Aneurysm
Partial CN III Palsy:
58 Year Old Female
With Subarachnoid Hemorrhage From Left Posterior Communicating Artery Aneurysm
Partial CN III Palsy:
57 Year Old Male
With Left Posterior Communicating Artery Aneurysm
Work-up

Case History
- Onset
- Direction & gaze of maximal diplopia
- Constant, episodic, or fatigable?
- Other ocular, systemic, or neurological symptoms, especially headache

Mental status
- Make note during history
- Ask about changes in behavior
- Observe other features like gait, balance, and coordination

Visual Fields
- Rule out other possible neurological issues

Pupils
- Evaluate lids during this time as well
- Size in dark and light conditions
- Reactivity
- RAPD
Work-up Continued

- Extraocular Motility
 - Ductions
 - Versions

- Evaluation of Diplopia
 - Unilateral and alternating cover test or Maddox rod
 - 9 fields of gaze
 - Rule out involvement of 4th and 6th nerve (Park’s 3 step, etc.)

- Evaluation of Other Cranial Nerves
 - CN I: normal olfaction
 - CN V: normal sensation V1, V2, V3
 - CN VII: no facial weakness
 - CN VIII: equal hearing
 - CN IX-X: symmetrical uvula/soft palate
 - CN XI: equal shoulder strength
 - CN XII: symmetrical tongue on protrusion

- Ocular Health
 - Dilate only after evaluation the pupil thoroughly
 - Possibly small pupil examination
 - Ancillary imaging as necessary

- Referral
 - Send to and consult with the emergency department
 - Neuro-imaging
 - Consult with neuro-ophthalmology/neurology and primary care

- Ocular Health
 - Dilate only after evaluation the pupil thoroughly
 - Possibly small pupil examination
 - Ancillary imaging as necessary

- Referral
 - Send to and consult with the emergency department
 - Neuro-imaging
 - Consult with neuro-ophthalmology/neurology and primary care
Referral

Pupil involved or incomplete, other neurological symptoms, or <50 yo
- **Emergent CT/CTA (or MRI/MRA)**
- Order lab testing as necessary
 - Older than 50 yo: rule out GCA; order CBC with differential, ESR, and CRP
- Dispense patch for diplopia

Pupil sparing, complete, **and** isolated palsy
- Neuro-imaging controversial in the past
- Given recent updates, improved technology, and increased access, recommendation is to obtain emergent CT/CTA (or MRI/MRA)

In both cases, consult with neuro-ophthalmologist
Imaging

Ruptured Aneurysms
- Head Computed Tomography (CT): 98-100% for up to 12 hours
- Magnetic Resonance Imaging (MRI) with FLAIR sequence: superior for non-aneurysmal causes of cranial mononeuropathies
- Lumbar Puncture (LP): gold standard

Unruptured Aneurysms
- CT Angiography (CTA): 53%-95% sensitivity; overall 98.9% specificity
- MR Angiography (MRA): 95% pooled sensitivity; 89% pooled specificity
- Digital Subtraction Angiography (DSA): gold standard
Goal is to **exclude the aneurysm from circulation** in order to:

1. Prevent aneurysmal rupture
2. Restore neurologic and visual function

Achieved through:

a. Surgical aneurysm clipping*
b. Endovascular coiling
c. Flow diverter therapy
Optometric Management

- Patching
- Prism
- Fresnel
- Ground-in
- Referral for strabismus or ptosis surgery
- Binocular vision or low vision specialty exam or referral
Aberrant Regeneration

- Involuntary muscle movement that accompany voluntary movements
- May develop following a CN III palsy
- **Very rare** in ischemic cases
- 65% have persistent diplopia
Most commonly results in:

- Eyelid-gaze dyskinesis: upper eyelid elevation in infra- or adduction
 - Also called Pseudo Von-Graefe sign
- Pupil-gaze dyskinesis: pupil constricts on infra- or adduction
 - Also called Pseudo Argyll-Robertson pupil
- Limitation of vertical movement: with globe retraction or adduction
Aberrant Regeneration

Residual supra-deficit

Right anisocoria & ptosis

Residual infra-deficit

https://webeye.ophth.uiowa.edu/eyeforum/atlas/pages/aberrant-regeneration-3rd-nerve-palsy.htm
Aberrant Regeneration

Miosis & lid elevation when adducting

https://webeye.ophth.uiowa.edu/eyeforum/atlas/pages/aberrant-regeneration-3rd-nerve-palsy.htm
Summary

• As eye care practitioners, a common reason we may see patients are for complaints of acute onset diplopia

• Though rare, intracranial aneurysms should be considered in double vision cases as they may quickly become life threatening
 • There are many possible symptoms, but suspicion should rise with presentation of a pupil-involved CN III palsy with ipsilateral head or eye pain

• Emergent CT/CTA is recommended as first line imaging

• Follow-up with the patient to manage their diplopia symptoms
 • Watch for development of aberrant regeneration
References

THANK YOU!

Co-residents:
Bee Bui, OD
Vincent Chan, OD
Christina Kim, OD
Michelle Lising, OD

Low Vision Team:
Jodi Roth
Kara Hackney
Leif Johanson
Elena Thomas
Paul Thomas

Residency Mentors:
Weon Jun, OD
Russell Jew, OD
Mark A. Williams, OD
Amara Callahan, OD
Kirk Halvorson, OD
Rebecca Kline, OD
Shannon Lutz, OD
Molly Phan, OD
Jonathon Thomas, OD
Grace Tsan, OD
Kimberly Winges, MD

Dr. Robert Watzke 😊