TUBERCULOSIS AND THE EYE

Amiee Ho, O.D.
Pacific University College of Optometry
With contributions by Nada J. Lingel, O.D., M.S., F.A.A.O.
Course Description

• This course will give an introduction to tuberculosis by some facts and statistics

• This course will provide an overview on tuberculosis transmission, screening, testing, treatment and preventing the transmission of tuberculosis

• This course will also highlight some ocular consequences of being infected with tuberculosis and ocular side effects of tuberculosis medications
Course Objective

• Briefly introduce tuberculosis and its impact as a public health concern
• To learn about tuberculosis’ mode of transmission
• To learn about various screening methods for tuberculosis
• To learn about tools we use to test for tuberculosis
• To learn about what treatment options are available for tuberculosis
• To learn about how to protect yourself from an active tuberculosis patient
• To highlight how a tuberculosis infection relates to optometry and what ocular manifestations you might encounter
Optometric considerations

- Pulmonary disease can increase the risk of ocular disease
 - Dry Eye
 - Glaucoma
 - ARMD
 - Retinal vascular changes
 - Optic nerve head changes

- Pulmonary disease can contraindicate ocular medications
Optometric considerations

- **Medications** taken for pulmonary disease can cause ocular problems
 - Optic atrophy
 - Glaucoma
 - Cataract
 - Blurred vision
 - Tear effects
 - Conjunctivitis
INTRODUCTION TO TUBERCULOSIS
Facts and Data about TB

- **TB is one of the world’s deadliest diseases:**
 - Approximately 1/3 of the world’s population is infected
 - 10.4 million new cases and 1.8 million deaths in 2015
 - TB is a *leading* killer of people who are HIV +

- Intense public health efforts to control TB has caused all time low incidence rates in US to 3 cases per 100,000 (2015)
 - Rates in US have remained stable since 2013

Rising Concerns

Rising concern:

- **Multidrug resistant TB (MDR-TB):** resistant to 2 most potent TB drugs (isoniazid and rifampin)
- **Extensively drug-resistant TB (XDR-TB):**
 - Rare type of MDR-TB
 - MDR-TB + resistant to fluoroquinolone, and at least one of three injectable second-line drugs
 - Increasing worldwide and recent evidence of spread person to person (50% cure rate)

TRANSMISSION
TB transmission

According to CDC: virtually all TB is transmitted by airborne particles

- Released during coughing, sneezing, shouting, or singing

TB CANNOT be spread by:

- Shaking hands
- Sharing food/drinks
- Sharing toothbrushes, drinking glasses, eating utensils
- Touching bed linens, toilet seats, clothes, other surfaces
- Kissing

About 30% of heavily exposed are infected

- % ↑ if patient has DM or HIV+

Heavy exposure = being around sick person for 24 hours for 6 months
TB transmission

Active infection

- **Latent and noninfectious**
- **Reactivation:**
 - 5% develop infection within 2 yrs
 - 10% over life time
 - Caused by DM, HIV, corticosteroids, stress
 - If HIV+ : risk of 7-10% TB infection per year

Who is at high risk for TB?

Individuals at higher risk for TB:

- Close contacts of patients suspected of having TB
- Immune suppressed (HIV, immune modulators, etc)
- Recently exposed
- Health care workers who serve high risk patients
- Residents and employees in long-term care facilities, jails, mycobacteriology labs, homeless shelters
- Recent immigrants from high TB prevalence countries
- Injectable drug users (suppressed immune system)
- Patients with chronic medical conditions
- Children < 4 years of age (less developed immune system)
SCREENING FOR TB
Screening for TB

Screening is often performed with the **Tuberculin Skin Test**

- **AKA:** Mantoux test or PPD

The Procedure:
- Purified protein derivative (PPD-S) tuberculin placed intradermal

The Results:
- Exposed or not, does **not** give info about active or latent

The Details:
- Delayed hypersensitivity response so read 48 - 72 hours later
- Evaluate for size of **induration** not redness
- Measured in **mm transversely** to the long axis of the forearm

Interpretation of TB skin test results depends on risk factors:

Induration of 5 mm or more is positive if:
- Immunosuppressed (HIV or meds) or
- Close contact with person with active TB/recently exposed or
- Chest x-rays show fibrosis consistent with TB

Induration of 10 mm or more is positive if:
- Any high risk individual who does not meet first criteria (includes health care workers)

Induration of 15 mm or more is positive in all
Interpretation of TB skin test

Positive Test results:

Mantoux Conversion

Either:

- A change from a negative \rightarrow a positive reaction

Or

- An increase of ≥ 10 mm in size
The 2 step test

CDC recommends **2 step test** for initial test if periodic testing needed

- **Goal**: Prevents interpreting 2nd test (or future test) results as **new** infection
- If infected many years ago few sensitized lymphocytes so no significant response on first test
- Repeat test \(\rightarrow\) larger “**boosted**” response which is considered baseline
- **Drugs are super toxic**, so should only treat those that need it!
Other screening tests

Interferon gamma release assays (IGRAs)
Two types of IGRAs are FDA approved:
1. QuantiFERON®-TB Gold In-Tube Test (QFT-GIT)
2. T-SPOT®.TB tests (T-Spot)

- Blood samples are mixed with TB proteins (antigens) and controls; then incubated for 16-24 hours
- If infection present: WBCs will release interferon-gamma in response to antigens
- Test result interpretation depends on risk factors and general health of patient
TST vs IGRA

TST is 3-4 times **less expensive** than IGRA

<table>
<thead>
<tr>
<th></th>
<th>TST</th>
<th>IGRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculin</td>
<td>Tuberculin is injected under the skin and produces a delayed-type</td>
<td>Blood is drawn for testing; test measures the immune response to the</td>
</tr>
<tr>
<td></td>
<td>hypersensitivity reaction if the person has been infected with</td>
<td>TB bacteria in whole blood</td>
</tr>
<tr>
<td></td>
<td>M. tuberculosis</td>
<td></td>
</tr>
<tr>
<td>Requires</td>
<td>Two or more patient visits to conduct the test</td>
<td>One patient visit to conduct the test</td>
</tr>
<tr>
<td>Results</td>
<td>48 to 72 hours later</td>
<td>24 hours (depending on the batching of specimens by the laboratory</td>
</tr>
<tr>
<td>Available</td>
<td></td>
<td>and transport)</td>
</tr>
<tr>
<td>Causes</td>
<td>Booster phenomenon</td>
<td>Does not</td>
</tr>
<tr>
<td>Reading</td>
<td>Subjective</td>
<td>Laboratory test not affected by HCW perception or bias</td>
</tr>
<tr>
<td>BCG Vaccination</td>
<td>Can cause false-positive result</td>
<td>BCG vaccination does not cause false-positive result</td>
</tr>
<tr>
<td>A negative</td>
<td>Does not</td>
<td>Does not</td>
</tr>
<tr>
<td>reaction</td>
<td>Excludes the diagnosis of</td>
<td></td>
</tr>
<tr>
<td>LTBI or TB</td>
<td>Disease</td>
<td></td>
</tr>
</tbody>
</table>

bacilli Calmette-Guerin (BCG) vaccine for TB
Tested **POSITIVE** for TB...

Diagnosis of active or reactivated TB:

- Depends on a **good history** and **clinical evaluation** because the disease tends to start insidiously.
- **Lungs** are most common site of disease (in Canada and US).
- **Classic symptoms** of pulmonary TB (non-specific symptoms):

 - Cough with or without hemoptysis
 - Sweats
 - Anorexia/Weight loss
 - Malaise
 - Chills
 - Chest pain (pleuritic disease)
 - Fever

- TB can also affect other sites like **lymphatic system**, bones and joints, **CNS**, **kidney**, etc.
TESTING FOR TB
Chest x-ray

- Posterior-Anterior (PA): standard chest x-ray view
- Since lungs manifests similarly for many diseases:

Assume TB if:

1. Tests positive for TB
2. See abnormality in lungs
Sputum sample

- 3 samples 8-24 hours apart with one in AM

Testing Sputum Samples:
- **Stain** looking for acid fast bacilli (AFB)
 - Poor sensitivity
- **Culture**
 - Cultures are likely to be positive with smaller #’s of bacilli and are gold standard but very slow (weeks)
- **Perform nucleic acid amplification test (NAA)**
 - More accurate than stains and give results in < 24 hours
<table>
<thead>
<tr>
<th></th>
<th>Latent TB infection</th>
<th>Active or Reactivated TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TST or IGRA</td>
<td>Usually positive</td>
<td>Usually positive</td>
</tr>
<tr>
<td>Signs/Symptoms</td>
<td>None</td>
<td>Fever, cough, chest pain, weight loss, night sweats, hemoptysis, fatigue, decreased appetite</td>
</tr>
<tr>
<td>Chest x-ray</td>
<td>Typically normal</td>
<td>Usually abnormal (maybe normal in adv immosuppression or extrapulmonary disease)</td>
</tr>
<tr>
<td>Sputum sample</td>
<td>Negative</td>
<td>Positive (negative in extrapulmonary disease or min/early pulmonary disease)</td>
</tr>
<tr>
<td>Spreading TB</td>
<td>Cannot spread to others</td>
<td>May spread to others</td>
</tr>
<tr>
<td>Treatment</td>
<td>Should consider treatment</td>
<td>Needs treatment</td>
</tr>
</tbody>
</table>
TREATMENT FOR TB
Treatment

- Currently **10 medications** are approved in US and there are multiple treatment regimens
- Treat both **latent** and **active** but treatment differs
 - Will **ALWAYS** treat **ACTIVE**
 - Will **USUALLY** treat **LATENT**
- Considered latent TB if screening test is **POSITIVE** but there are no signs of active infection by **chest x-ray or sputum culture**
- Cure rate for extensively resistant TB is 50%!
Treatment

What factors to consider for treatment?

- Age
 - Young pts: will likely treat, will have to live with disease for LONG time
 - Elderly pts: drugs very toxic for elderly pts, TB is SLOW growing
- Immune status
- How long ago pt was exposed
 - Will likely treat more recent latent TB vs old latent TB
Treatment

Goals for Treatment:
- Cure infection
- Minimize death and disability
- Prevent drug resistance
- Reduce transmission (hit hard in the beginning to prevent spreading!)
Drugs to treat TB

• Rifampin or Rifapentine
• Isoniazid
• Pyrazinamide
• Ethambutol
Drugs to treat TB

• **Rifampin or Rifapentine**
 - Resistant strains develop easily so usually not given alone
 - **Rifapentine**
 - SE: Reddens secretions including urine and tears, stains contact lenses; liver damage, nausea&vomiting, fever

• **Isoniazid**

• **Pyrazinamide**

• **Ethambutol**
Drugs to treat TB

- **Rifampin or Rifapentine**
- **Isoniazid**
 - Most potent of anti-TB drugs
 - Can be administered alone for latent TB treatment
 - Chief risk: hepatotoxicity (d/c other drugs cleared by liver-alcohol, Tylenol)
 - Other SE: anemia, GI symptoms, rash, peripheral neuropathy, subepithelial corneal infiltrates, optic neuritis, visual field defects, EOM paresis
- **Pyrazinamide**
- **Ethambutol**
Drugs to treat TB

• Rifampin or Rifapentine
• Isoniazid
• Pyrazinamide
 • Resistant strains develop easily so usually not given alone
• Ethambutol
Drugs to treat TB

- Rifampin or Rifapentine
- Isoniazid
- Pyrazinamide
- Ethambutol
 - Does not develop resistance as easily
 - Ocular SEs: optic neuritis, macular edema, and pigmentation changes (permanent)

Note: Care in patients with poor liver function for all TB meds
To supplement the Treatment of **LATENT TB**

Pyridoxine (Vitamin B6)

- Usually co-administered for all latent TB treatments
- Very important for:
 - Pregnant patients
 - Diabetics
 - Alcoholics
 - Elderly
 - Malnourished individuals
- Helps *diminish risk of peripheral neuropathy* from *isoniazid*

Vitamin C and D may ↑ speed of TB treatment (kill TB faster)
PREVENTING TRANSMISSION
Preventing TB transmission

Latent TB: nothing to worry about

Active TB or suspected active:
- Place patient in isolated room
- Have patient wear surgical mask (50% effective)
- Ask them to cover mouth and nose with tissues when they cough or sneeze
- HEPA mask for health providers per OSHA
- Once patient treated for 2 weeks, no longer considered infectious

If believe exposed to disease
- Wait 8 weeks to take TB skin test (if known previously negative)
BACK TO OPTOMETRY
Risk of Ocular involvement with TB

• 1-2% of patients with TB have ocular sign (non-HIV+)
• \(\approx 18\%\) if HIV+ patients with TB have ocular signs

• Suggested that patients with TB have ocular exam
• Ocular signs can also be first indication of TB
Ocular Signs of TB

External Eye Structures

- Ulceration of lids with scarring and ectropion
- Cellulitis
- Dacryoadenitis (gland)
- Phlyctenulosis**
- Keratoconjunctivitis
- Interstitial keratitis (also syphilis)
- Episcleritis and Scleritis
Ocular Signs of TB

Posterior Segment
- Uveitis
- Choroiditis
- Retinal periphlebitis
- Optic neuritis
- Cranial neuropathy
Eye exams for TB patients

Optometric involvement
- Baseline and monthly exams
- Check VA’s
- EOMs
- Amsler grid
- Visual field
- If changes consistent with **optic neuritis**: inform PCP: d/c ethambutol
- Expect improvement in couple weeks to months
THANK YOU
Amiee Ho, O.D.
Assistant Professor
Pacific University College of Optometry
amieeho@pacificu.edu