An Update on Branch Retinal Vein Occlusion Treatment Studies

Amiee Ho, O.D.
Pacific University
College of Optometry
Course Description

• This course focuses on current treatment options available for macular edema and neovascularization secondary to branch retinal vein occlusion (BRVO).
Course objectives

• Briefly review what vision threatening conditions can occur in patients with BRVO
• Understanding what treatment options are available to treat these vision threatening conditions secondary to BRVO
• Reviewing important research studies on these treatment options for BRVO
• Understand what treatment options are currently recommended and being employed for BRVO
Treatment: Introduction

• BRVO: What are we treating?

• Potential complications:
 • Macular edema \rightarrow Vision loss
 • Retinal neovascularization \rightarrow Retinal damage/detachment
 • Iris/angle neovascularization \rightarrow Neovascular glaucoma

• Goal:
 • Eliminate macular edema
 • Eliminate retinal/iris/angle neovascularization

What are we treating?
Why are we treating?
What is the goal?
What are the treatments?

What are the options??
Systemic Treatment

• Medical treatment is **NOT** effective
 • Anticoagulants
 • Fibrinolytic agents
 • Clofibrate capsules (atromid-S)
 • Carbogen inhalation
 • Hemodilution
Ocular Treatments

• **Surgical care**
 - Macular grid laser photocoagulation
 - Scatter photocoagulation
 - Laser-induced chorioretinal anastomosis
 - Vitrectomy and arteriovenous decompression

• **Pharmacotherapy**
 - Intravitreal corticosteroid therapy
 - Triamcinolone (Kenalog-40)
 - Dexamethasone intravitreal implant (Ozurdex)
 - Intravitreal anti-VEGF
 - Bevacizumab (Avastin)
 - Ranibizumab (Lucentis)
 - Aflibercept (Eylea)
BRVO Studies

- BVOS – BRVO (landmark study)
- GENEVA – BRVO & CRVO
- SCORE – BRVO
- BRAVO – BRVO
- HORIZON – BRVO & CRVO
- VIBRANT – BRVO & hemi-RVO
- BERVOLT – BRVO & CRVO
- BRIGHTER – BRVO
- RELATE – BRVO & CRVO
BVOS

Branch Vein Occlusion Study

(Landmark study)
BVOS: Background

• Many treatments attempted before 1977 but none were effective
• Only treatment that seemed promising is laser photocoagulation
BVOS: The Basics

• **Branch Vein Occlusion Study (BVOS)** was a multi-center, prospective, randomized, controlled clinical trial supported by the National Eye Institute (NEI)

• **Date**: 1984 and 1986

• **Participants**: 540

• **Duration**: mean of 3.1 years
BVOS: Purpose

- The BVOS was designed to answer the following questions:

 1. Can peripheral scatter argon laser photocoagulation **prevent** the development of **neo-vascularization**?
 2. Can peripheral scatter argon laser photocoagulation **prevent** **vitreous hemorrhage**?
 3. Can macular argon laser photocoagulation **improve** **visual acuity** in eyes with **macular edema reducing vision to 20/40 or worse**?
BVOS: Protocol

• **Groups:**
 - 1. Eyes with ≥ 5DD nonperfusion w/o NV (319 eyes)
 - 2. Eyes with NV (82 eyes)
 - 3. Eyes with BRVO & ME & VA $\leq 20/40$ (139 eyes)

• $\frac{1}{2}$ were randomly assigned to treatment with argon laser photocoagulation
• $\frac{1}{2}$ remained untreated as controls
Summarized results:

• 1. Overall, 63% of nonperfused eyes will develop neovascularization

• 2. 31% of eyes develop vitreous hemorrhage after being treated for neovascularization and nonperfusion

• 3. Eyes randomized to grid laser had visual acuity gain
Questions:
• 1. Can peripheral scatter argon laser photocoagulation prevent the development of neovascularization?

2. Can peripheral scatter argon laser photocoagulation prevent vitreous hemorrhage?

3. Can macular argon laser photocoagulation improve visual acuity in eyes with macular edema reducing vision to 20/40 or worse?

Conclusions:
• 1/2. Peripheral scatter argon laser photocoagulation PREVENTED of both neovascularization and vitreous hemorrhage to a significant degree.
 • Laser should be applied after, rather than before, the development of neovascularization.

• 3. Argon laser photocoagulation improved the VA to a significant degree in eyes with BRVO and visual acuity reduced from macular edema to 20/40 or worse.
 • Recommended laser for patients with macular edema
BVOS: Prognosis

• Good
• 50% have >20/40 vision unless foveal ischemia or chronic macular edema is present
• Risk of another BRVO in same eye is 3% and in fellow eye is 12%
BRVO Studies

✓ BVOS – BRVO (landmark study)
- GENEVA – BRVO & CRVO
- SCORE – BRVO
- BRAVO – BRVO
- HORIZON – BRVO & CRVO
- VIBRANT – BRVO & hemi-RVO
- BERVOLT – BRVO & CRVO
- BRIGHTER – BRVO
- RELATE – BRVO & CRVO
SCORE

The Standard Care vs. Corticosteroid for Retinal Vein Occlusion Study
SCORE: The Basics

• **The Standard Care vs. Corticosteroid for Retinal Vein Occlusion Study**
 • **Start date**: November 2004
 • **Complete date**: February 2008
 • **Participants**: 411
 • **Duration**: 12 months
• **Purpose**: To assess the efficacy and safety of standard care (grid laser) vs. triamcinolone acetonide injections (1mg and 4mg doses) for the treatment of macular edema associated with CRVO and BRVO
SCORE: Protocol

• Groups:
 • 1. IV triamcinolone (1mg)
 • 2. IV triamcinolone (4mg)
 • 3. Standard care (macular grid laser):
 • CRVO: observation
 • BRVO:
 • Grid photocoagulation w/o dense macular heme
 • Deferral of photocoagulation w/ dense macular heme until clear
SCORE: Results

• Compare
 • 4mg triamcinolone vs standard care
 • 1mg triamcinolone vs standard care
 • 4mg vs 1mg triamcinolone

at 1 year:

<table>
<thead>
<tr>
<th>Change in VA letter score</th>
<th>SC</th>
<th>1 mg</th>
<th>4 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 15 gain</td>
<td>29%</td>
<td>26%</td>
<td>27%</td>
</tr>
</tbody>
</table>

significantly higher ocular complications
SCORE: Results

• Higher ocular complications with 4mg triamcinolone acetonide injections:
 • Elevated intraocular pressure
 • Cataract formation

• Overall complications with corticosteroid use:
 • Cataract formation
 • Elevation of IOP
 • Infectious endophthalmitis
 • Non-infectious endophthalmitis
 • Retinal detachment
SCORE: Conclusion

• **VA**: No significant difference at 12 months
 • 12-36months: **SC group** had best VA improvement

• **OCT retinal thickness**: All 3 groups had reduction from baseline to 12 months
 • 12-36months: **SC group** had greatest reduction

• **SC group** had a better **safety** profile than triamcinolone group

• **Conclusion**: SC (grid laser) better for Tx of macular edema secondary to BRVO

• *For both CRVO and BRVO:*
 • Younger age = improved VA and central retinal thickness
 • Shorter duration of macular edema = better outcome
Other corticosteroids?

- **SCORE**: tested Triamcinolone
- **Dexamethasone**
 - More potent
 - Intravitreal injections:
 - High drug levels
 - Without toxic effects
- Downfall:
 - Short intraocular life ~3 hours
- **Ozurdex** (dexamethasone implant):
 - Lasts ~4 months
 - Designed and approved for ME 2/2 vein occlusion
BRVO Studies

- ✔ BVOS – BRVO (landmark study)
 - GENEVA – BRVO & CRVO
- ✔ SCORE – BRVO
 - BRAVO – BRVO
 - HORIZON – BRVO & CRVO
 - VIBRANT – BRVO & hemi-RVO
 - BERVOLT – BRVO & CRVO
 - BRIGHTER – BRVO
 - RELATE – BRVO & CRVO
BRAVO

Ranibizumab (Lucentis) for the Treatment of Macular Edema following BRAnch Retinal Vein Occlusion
BRAVO: THE BASICS

• Ranibizumab for the Treatment of Macular Edema following BRAch Retinal Vein Occlusion

• Start date: July 2007
• End date: May 2009
• Duration: 12 months
• Participants: 397
BRAVO: Purpose

• **Purpose:** to study the efficacy and safety of IV ranibizumab (anti-VEGF) 0.3mg & 0.5mg vs sham (placebo) injections in patients with macular edema secondary to BRVO
BRAVO: Protocol

Treatment: 1st 6 months
- 1. Sham injection (control)
- 2. 0.3 mg ranibizumab IV injection q1m
- 3. 0.5 mg ranibizumab IV injection q1m

Observation: 2nd 6 months
- Patients assessed monthly
- Ranibizumab PRN if:
 - Vision ≤ 20/40 or
 - OCT central thickness ≥ 250

- Rescue grid laser photocoagulation offered at 3 and 9 months if specific criteria is met
Letter Gain

<table>
<thead>
<tr>
<th></th>
<th>Treatment: 1<sup>st</sup> 6 months</th>
<th>Observation: 2<sup>nd</sup> 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham (control)</td>
<td>7.3 letters</td>
<td>12.1 letters</td>
</tr>
<tr>
<td>0.3mg ranibizumab</td>
<td>16.6 letters</td>
<td>16.4 letters</td>
</tr>
<tr>
<td>0.5mg ranibizumab</td>
<td>18.3 letters</td>
<td>18.3 letters</td>
</tr>
</tbody>
</table>

% of patients gained 3 lines

<table>
<thead>
<tr>
<th></th>
<th>% of patients gained 3 lines</th>
<th>Needed rescue laser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td>Overall</td>
</tr>
<tr>
<td>Sham (control)</td>
<td>28.8%</td>
<td>54.5%</td>
</tr>
<tr>
<td>0.3mg ranibizumab</td>
<td>55.2%</td>
<td>18.7%</td>
</tr>
<tr>
<td>0.5mg ranibizumab</td>
<td>61.1%</td>
<td>19.8%</td>
</tr>
</tbody>
</table>
BRAVO: Conclusions

• Ranibizumab (0.3mg or 0.5mg) for 6 months caused rapid and sustained improvement in BCVA

• Ranibizumab shown to be effective in treating macular edema secondary to BRVO

• Good safety
 • Serious adverse effects and adverse effects rare

• Things to consider:
 • This study is ranibizumab vs placebo, not vs laser
BRVO Studies

- BVOS – BRVO (landmark study)
- GENEVA – BRVO & CRVO
- SCORE – BRVO
- BRAVO – BRVO
- HORIZON – BRVO & CRVO
- VIBRANT – BRVO & hemi-RVO
- BERVOLT – BRVO & CRVO
- BRIGHTER – BRVO
- RELATE – BRVO & CRVO
VIBRANT

Intravitreal aflibercept (Eylea) for macular edema following branch retinal vein occlusion
VIBRANT: THE BASICS

• Intravitreal aflibercept (Eylea) for macular edema following branch retinal vein occlusion
• Start date: April 2012
• End date: March 2014
• Duration: 12 months
• Participants: 181
VIBRANT: Purpose

- **Purpose:** to determine efficacy and safety outcomes in eyes with ME after BRVO treated with 2mg IV aflibercept injection compared with grid laser
VIBRANT: Protocol

Randomized into TWO groups

<table>
<thead>
<tr>
<th>IV aflibercept injection</th>
<th>Laser photocoagulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Injection q4 weeks through week 24</td>
<td></td>
</tr>
<tr>
<td>• Injection q8 weeks through week 48</td>
<td></td>
</tr>
<tr>
<td>• Rescue laser PRN week 36</td>
<td></td>
</tr>
<tr>
<td>• Grid laser at baseline</td>
<td></td>
</tr>
<tr>
<td>• If rescue needed: 1 additional laser week 12-20 and aflibercept injection q 8 weeks after 3 monthly doses from week 24 onward (laser/aflibercept group)</td>
<td></td>
</tr>
</tbody>
</table>
VIBRANT: Conclusions

• **Afiblercept is an effective treatment for ME due to BRVO**

• After 6 monthly injections of afiblercept, injections q8weeks maintained control of ME and VA benefits through week 52

• The VA benefits were significantly better in eyes treated with afiblercept q4 weeks for 24 weeks vs treated with grid laser therapy

• In the laser group, rescue afiblercept resulted in substantial VA improvements at week 52
BRVO Studies

- BVOS – BRVO (landmark study)
- GENEVA – BRVO & CRVO
- SCORE – BRVO
- BRAVO – BRVO
- HORIZON – BRVO & CRVO
- VIBRANT – BRVO & hemi-RVO
 - BERVOLT – BRVO & CRVO
 - BRIGHTER – BRVO
 - RELATE – BRVO & CRVO
BERVOLT

Bevacizumab (Avastin) for RVO Long-Term Follow Up
BERVOLT: The Basics

Bevacizumab for RVO Long-Term Follow Up

- **Date:** 2015
- **Duration:** mean follow up of 24.4 months
- **Participants:** 87 eyes (BRVO) & 65 CRVO
- **Study type:** Retrospective, non-comparative case series
BERVOLT: Purpose

• **Purpose**: To assess the efficacy and safety of intravitreal injections of bevacizumab in patients with macular edema following BRVO and CRVO
BERVOLT: Protocol

• Retrospective, non-comparative case series

• **Inclusion:**
 • Patients ≥ 18 years old with ME secondary to BRVO or CRVO
 • Minimum of 1 IV bevacizumab injection
BERVOLT: Results

Results:
- Significant improvement of VA
- Mean improvement of 13 letters at 2 years with average 7.6 injections
BERVOLT: Conclusion

• Bevacizumab is an alternative anti-VEGF therapy for ME secondary to BRVO
• VA gains are similar to findings in BRAVO study (Ranibizumab)
• Study limitations:
 • Retrospective, non-comparison case series
 • Lack randomization
 • Variable protocol use of bevacizumab (not standardized)
BRVO Studies

- BVOS – BRVO (landmark study)
- GENEVA – BRVO & CRVO
- SCORE – BRVO
- BRAVO – BRVO
- HORIZON – BRVO & CRVO
- VIBRANT – BRVO & hemi-RVO
- BERVOLT – BRVO & CRVO
- BRIGHTER – BRVO
- RELATE – BRVO & CRVO
BRIGHTER

Individualized Stabilization Criteria-Driven Ranibizumab versus Laser in Branch Retinal Vein Occlusion

(6 month results)
BRIGHTER: The Basics

• Phase IIIb, randomized, open-label, active-controlled, 3 arm, multicenter study
• **Date**: published June 2016 (started May 2012)
• **Duration**: 6 months (projected 24 months)
• **Participants**: 455
BRIGHTER: Purpose

• **Purpose**: assessing the efficacy and safety profile PRN dosing regimen of ranibizumab 0.5mg alone or in combination with laser vs laser photocoagulation in patients with VA impairment due to ME secondary to BRVO

• **Questions**:
 • 1. Long term – efficacy and safety of ranibizumab 0.5mg in BRVO (w/ or w/o ME)
 • 2. Impact of adjunct laser Tx on VA and number of ranibizumab injections required
BRIGHTER: Protocol

• Three groups:
 • 1. Ranibizumab 0.5mg
 • 2. Ranibizumab 0.5mg with laser
 • 3. Laser alone
BRIGHTER: Conclusions

• 6 month data showed ranibizumab alone with or without laser is SUPERIOR to laser monotherapy in significantly improving VA in patients with BRVO

• *Similar VA gains between patients with macular ischemia vs patients w/o ischemia
 • Suggesting early treatment can improve VAs irrespective of baseline VA (seen as early as the 6 month mark)
BRVO Studies

- BVOS – BRVO (landmark study)
- GENEVA – BRVO & CRVO
- SCORE – BRVO
- BRAVO – BRVO
- HORIZON – BRVO & CRVO
- VIBRANT – BRVO & hemi-RVO
- BERVOLT – BRVO & CRVO
- BRIGHTER – BRVO
- RELATE – BRVO & CRVO
RELATE

Ranibizumab DosE Comparision (0.5mg and 2.0mg) And the Role of LAser in the Management of REtinal Vein Occlusion
RELATE: The Basics

- RELATE: Ranibizumab DosE Comparision (0.5mg and 2.0mg) And the Role of LAser in the Management of Retinal Vein Occlusion
 - BRVO & CRVO
 - Purpose: to compare effects of 0.5mg or 2mg of ranibizumab q6months in patients with CRVO or BRVO
 - Protocol:
 - 6 sessions of monthly injections to both 2mg and 0.5mg
 - At 6 months: randomization to see if laser to areas with capillary nonperfusion can help resolve edema with less injections and if VAs are maintained despite laser treatment

- Results pending....
BRVO Studies Summary

• BVOS – BRVO (landmark study): laser ME and AFTER NV
• GENEVA – BRVO & CRVO
• SCORE – BRVO: Laser better for ME vs corticosteroids
• BRAVO – BRVO: Ranibizumab is effective for treating ME
• HORIZON – BRVO & CRVO
• VIBRANT – BRVO & hemi-RVO: Afiblercept is effective for treating ME
• BERVOLT – BRVO & CRVO: Bevacizumab is effective for treating ME
• BRIGHTER – BRVO: Ranibizumab (alone) w/ or w/o laser is better than laser alone for ME
• RELATE – BRVO & CRVO: 0.5mg vs 2mg Ranibizumab - Results pending

Laser better for ME vs corticosteroids
Ranibizumab is effective for treating ME
Bevacizumab is effective for treating ME
Ranibizumab (alone) w/ or w/o laser is better than laser alone for ME
0.5mg vs 2mg Ranibizumab - Results pending
Treatment Summary

• BRVO: What are we treating?

• Potential complications:
 • Macular edema \rightarrow Vision loss
 • Retinal neovascularization \rightarrow Retinal damage/detachment
 • Iris/angle neovascularization \rightarrow Neovascular glaucoma

• Goal:
 • Eliminate macular edema
 • Eliminate retinal/iris/angle neovascularization
Ocular Treatments Summary

• Surgical care
 • Macular grid laser photocoagulation
 • Scatter photocoagulation
 • Laser-induced chorioretinal anastomosis
 • Vitrectomy and arteriovenous decompression

• Pharmacotherapy
 • Intravitreal corticosteroid therapy
 • Triamcinolone (Kenalog-40)
 • Dexamethasone intravitreal implant (Ozurdex)
 • Intravitreal anti-VEGF
 • Bevacizumab (Avastin)
 • Ranibizumab (Lucentis)
 • Aflibercept (Eylea)
Thank you

Amiee Ho, O.D.
Assistant Professor
Pacific University College of Optometry
amieeho@pacificu.edu
References

- Saxena S. Laser photocoagulation in retinal vein occlusion : Branch vein occlusion study and central vein occlusion study recommendations. Indian J Ophthalmol 1997;45:125-8
- Risk factors for branch retinal vein occlusion. The Eye Disease Case-control Study Group. Am J Ophthalmol. Sep 15 1993;116(3);286-96
- Tadayoni, Ramin, MD, PhD, Sebastian M. Waldstein, MD, Francesco Boscia, MD, Heinrich Gerding, MD, Ian Pearce, FRCOpht, Siegfried Priglinger, MD, Andreas Wenzel, PhD, Elizabeth Barnes, PhD, Margarita Gekkieva, MD, Stefan Pilz, PhD, and Jordi Mones, MD, PhD. "Individualized Stabilization Criteria-Driven Ranibizumab versus Laser in Branch Retinal Vein Occlusion: Six-Month Results of BRIGHTER." *Ophthalmology* 123.6 (2016): 1332-344. *American Academy of Ophthalmology.* Elsevier Inc.